Нагнетатель консистентной смазки, пневматический мобильный TS-50500, (емкость 13 кг)

Инструкция по эксплуатации и сборке

Описание нагнетателя смазки

Для работы нагнетателя смазки применяется сжатый воздух. Насос нагнетает смазку под высоким давлением. Этот аппарат имеет важное значение в производственном процессе предприятия. Он отличается высокой надежностью, воздуха, ВЫСОКИМ рабочим давлением, удобством низким расходом производительностью, использовании, высокой низкими трудозатратами, позволяет нагнетать смазку высокой вязкости. Применяется для обслуживания автомобилей и другой техники.

Хранение инструкции

Соблюдайте предупреждения и меры предосторожности, выполняйте инструкции по сборке, рабочие операции и процедуры технического обслуживания, описанные в данной инструкции. Кроме того, обратите внимание на список запасных частей и схемы нагнетателя. Пожалуйста, бережно храните инструкцию в надежном и сухом месте, чтобы обращаться к ней в будущем.

Основные правила по техники безопасности

ПРЕДУПРЕЖДЕНИЕ! Внимательно прочитайте все инструкции. Несоблюдение инструкций, приведенных на следующих страницах документа, может стать причиной удара электрическим током, возникновения пожара и и/или получения серьезных травм. БЕРЕЖНО ХРАНИТЕ ИНСТРУКЦИЮ.

<u>Рабочая зона</u>

- 1. Рабочая зона должна быть чистой и хорошо освещенной. Сжатый воздух должен быть отфильтрован, воздух, поступающий в пневматический насос нагнетателя смазки, не должен содержать пыль. В этом случае предотвращается чрезмерный износ подвижного золотникового устройства, цилиндра и др.
- 2. Запрещено работать с нагнетателем во взрывоопасной атмосфере, например, в присутствии горючих жидкостей, легковоспламеняющихся газов или пыли. Пневматические механизмы вызывают искрение, которое способно привести к пожару.
- 3. Не допускайте посторонних лиц, в том числе, детей и посетителей, в рабочую зону. Отвлечение вашего внимания может стать причиной потери контроля за ситуацией. Защитите людей в рабочей зоне от попадания искр и стружки. Установите ограждения или щиты, при необходимости.

Персональная защита

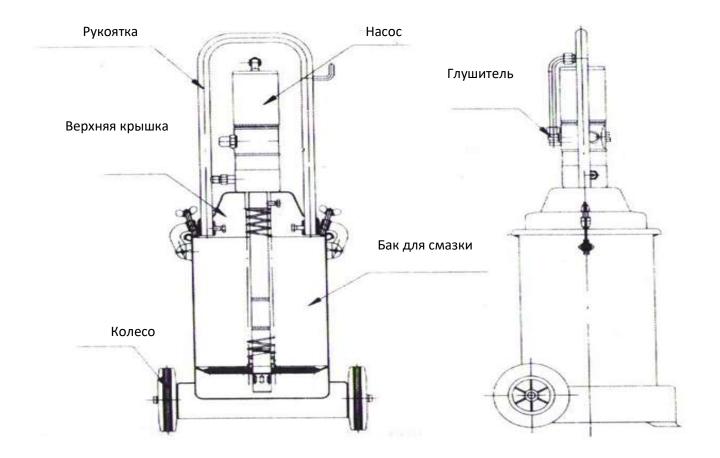
1. Будьте внимательны. Следите за работой пневматического инструмента. Не работайте с пневматическими инструментами в состоянии усталости, под воздействием медикаментозных средств и в состоянии алкогольного опьянения. Невнимательность может стать причиной получения серьезных травм.

- 2. Работайте в спецодежде. Избегайте попадания волос, одежды и перчаток в подвижные части машины. Украшения, широкополая одежда, длинные волосы могут попасть в подвижные детали установки.
- 3. Соблюдайте равновесие. Носите обувь на нескользящей подошве. Правильное равновесие позволяет контролировать работу инструментов.
- 4. Используйте защитное оборудование. Всегда носите защитные очки, маску и наушники.

Внимание

В момент включения насоса нагнетателя смазка постепенно заполняет трубку плунжерно-поршневого насоса, давление в системе постепенно нарастает, а скорость возвратно-поступательного движения насоса снижается вплоть до полной остановки. Затем внутреннее давление насоса достигает равновесного состояния, в этот момент давление имеет максимальное значение. Если рычаг маслораздаточного пистолета нажат, смазка под высоким давлением подается пистолетом для шприцевания шарнира. В результате этого давление в насосе выходит из состояния равновесия, насос включает возвратно-поступательное движение и нагнетает смазку. После того как смазка снова попадает в трубу плунжерно-поршневого насоса и давление достигает максимального значения, насос снова останавливает работу и возвратно-поступательные движения. Поэтому насос работает в прерывистом режиме. В момент остановки работы насоса и его возвратно-поступательного движения при максимальном давлении необходимо проверить, что все соединительные детали герметичны и не дают утечек. После завершения этой проверки можно выполнять шприцевание.

Обслуживание аппарата


Для исправной работы нагнетателя смазки необходимо следить за его техническим состоянием, от которого зависит срок службы аппарата и его эффективность. Обслуживание нагнетателя смазки с пневматическим приводом должно включать в себя следующие операции:

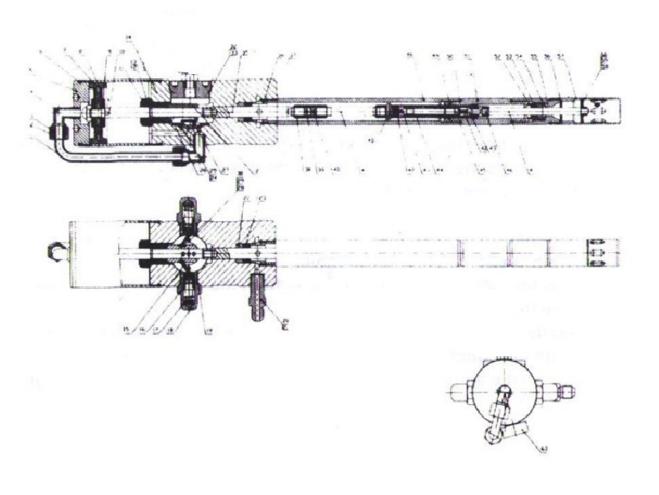
- 1. Давление сжатого воздуха не должно превышать 0,7МПа во избежание перегрузки и снижения срока службы шланга высокого давления.
- 2. При использовании шланга высокого давления запрещается его изгибать и прикладывать чрезмерные нагрузки.
- 3. При хранении следует снять быстросъемный соединитель, нажать рычаг пистолета, чтобы удалить остатки смазки из шланга, снизить внутреннее давление смазки в аппарате и увеличить долговечность шланга высокого давления.
- 4. Необходимо регулярно смазывать пневматический насос нагнетателя смазки.
- 5. При разборке исключите падение деталей аппарата, чтобы обеспечить точность последующей сборки.
- 6. Не включайте нагнетатель без нагрузки, если в баке недостаточное количество консистентной смазки, во избежание перегрева плунжерно-поршневого насоса и повреждения деталей машины.

7. Работы по очистке и обслуживанию должны проводиться регулярно. Выполняйте очистку всей системы по графику, снимите инжектор с пистолета, удалите загрязнения с помощью очистителя, бак для смазки должен быть чистым.

Характеристики

Степень сжатия насоса 50:1 (без учета	Давление сжатого воздуха 0,6-		
абразивного износа)	0,8МПа		
Диаметр воздушного цилиндра 70мм	Ход плунжера 35мм		
Скорость нагнетания смазки 0-0,85 л/мин	Давление нагнетания 30-40МПа		
Вес установки 17кг	Габариты 310×350×825		

Принцип работы и конструкция нагнетателя смазки


Нагнетатель смазки с пневматическим приводом включает в себя насос нагнетателя, маслораздаточный пистолет, шланг высокого давления, быстросъемный соединитель, бак для хранения смазки. Насос показан на рисунке.

Подготовка перед эксплуатацией

- 1. Включите пневматический компрессор, отрегулируйте давление подачи сжатого воздуха в пределах 0,5 0,7МПа
- 2. Открутить боковые болты с обеих сторон крышки бака, приподнимите рукоятки, крышку бака, насос и прижимной диск с поворотом на угол 20-30 градусов. Это позволяет легче удалить воздух из бака без необходимости в снятии деталей аппарата.
- 3. Максимальный объем смазки, который следует залить в бак нагнетателя, составляет 12 кг. Чтобы исключить возникновение пузырьков воздуха, смазку следует прижать диском насосного узла.
- 4. Расположите рукоятки, крышку бака, насос и прижимной диск вертикально в баке, затем с усилием нажмите на насос, чтобы диск прижался к слою смазки в баке. Расположите всасывающий патрубок насоса на дне бака, закрутите боковые болты с обеих стороны крышки насоса.
- 5. Соедините быстросъемный соединитель со шлангом подачи сжатого воздуха.
- 6. Подсоедините насос для подачи смазки и маслораздаточный пистолет к шлангу высокого давления, перед подключением выполните работы по очистке. Затяните соединения с помощью гаечных ключей для предотвращения утечек смазки.
- 7. Вставьте быстросъемный соединитель в штуцер для всаса сжатого воздуха, включите насос. Насос приводит в действие плунжер и выбрасывает воздух через глушитель.

1. Насос для подачи консистентной смазки

Насос для подачи консистентной смазки состоит из верхнего пневматического насоса и нижнего плунжерно-поршневого насоса. См. рис. 2. Пневматический насос приводит в действие плунжерный насос. Под действием сжатого воздуха плунжерно-поршневой насос совершает возвратно-поступательные движения и перекачивает смазку под давлением. Поскольку площадь поршня намного больше площади плунжера, давление смазки значительно возрастает. Степень сжатия составляет 50:1. Давление сжатого воздуха на входе 0,6МПа. Давление консистентной смазки на выходе достигает 30МПа (без учета износа плунжерной пары). Теперь рассмотрим принцип действия пневматического насоса и плунжерно-поршневого насоса соответственно.

Nº	Название	Замечание	Nº	Название	Замечание
1	Пневматическая трубка		36	Уплотнительная крышка	Ф25×4
2	Медный ниппель	Ф12×1,5	37	Круглое уплотнительное кольцо	Ф24×2,4
3	Гайка	S19	38	Регулировочная гайка S13	
4	Угловой соединитель		39	Штифт	Ф3×20
5	Крышка цилиндра	Φ75	40	0 Штифт Ф:	
6	Круглое уплотнительное кольцо	Ф70×3,1	41	Соединительный шток	Ф10
7	Цилиндр	Φ75×2,5	42	42 Пружина впуска смазки Ф4	
8	Поршень		43	Стальной шарик Ф6	
9	Поршневая прокладка	Ф32×9,9	44	Плунжерно-поршневая втулка Ф15 (камера)	
10	Поршневой палец	Ф16	45	Седло пружины	Ф10
11	Круглое уплотнительное кольцо	Ф16×2,4	46	Камера (шток) плунжера	S13
12	Установочный винт	S27	47	Нагрузочный шток	Ф8
13	Круглое уплотнительное кольцо	Ф20×1,8	48	Соединительная трубка	Ф32×5,5
14	Устройство подачи воздуха	Φ75	49	Круглое уплотнительное кольцо	Ф14×2,65
15	Обратный клапан		50	Круглое уплотнительное кольцо	Ф20×2,65
16	Клапанные втулки	Ф14	51	Корпус насоса	Ф30,2
17	Пружина обратного клапана		52	Обратный клапан	Ф18
18	Опора направляющей	S24	53	U-образное уплотнительное кольцо	8×14×6
19	Круглое уплотнительное кольцо	Ф17×2,65	54	Манжета обратного клапана	Ф20
20	Соединитель для нагнетания смазки	S17	55	Седло впускного клапана смазки	Ф30,2
21	Медная прокладка		56	Кольцо перелива Ф26	
22	Уплотнительная прокладка	Ф22	57	Трубка всаса смазки Ф32×5	
23	U-образное уплотнительное кольцо	Ф12×22×8	58	Нагрузочная пластина	Ф26
24	Опора устройства подачи воздуха	Ф26	59	Гайка	M6
25	Бумажная прокладка	0,5	60	Манжета пружины	Ф4
26	Обшивка	Ф43	61	Соединитель регулятора давления	S16
27	Золотник подачи воздуха				
28	Буферная пружина		63	Глушитель	Ф30
29		M4×10			
30	Пружинная прокладка	Φ4			
31	Нажимная гильза	Ф20			
32	Крышка воздушной камеры	ZG1/4"			
33	Круглое уплотнительное кольцо	Ф46×2,5			
34	Впускной воздушный соединитель	G1/4"			
35	Поршневой соединитель	Ф14			

Принцип работы пневматического насоса

Пневматический насос состоит из цилиндра (7), поршня (8), устройства подачи воздуха (14) и др. Три равноудаленных отверстия расположены в камере для подачи воздуха устройства (14). Среднее отверстие является вентиляционным, верхнее отверстие соединено с нижней частью цилиндра поршня, нижнее отверстие соединено с верхней частью цилиндра поршня. Другие детали камеры являются конструктивными элементами и предназначены для контроля всаса и нагнетания насосом воздуха, обеспечивают движение поршня вверх-вниз.

После подключения быстросъемного соединителя сжатый воздух подается в камеру после прохождения регулятора давления. Подвижный блок (золотник) (27) в камере для подачи воздуха служит основным следящим устройством перемещения поршня вверх-вниз. Если золотник (27) занимает верхнее предельное положение, сжатый воздух поступает в верхнюю часть цилиндра поршня через нижнее отверстие в камере и обеспечивает движение поршня (8) вниз. Воздух выходит из цилиндра через второе отверстие, которое закрыто золотником. Поршень (8) перемещается вниз в определенное положение. поршневой палец (10) воздействует на нажимную гильзу (31) и тоже перемещает ее вниз, в этот момент обратный клапан (15), который опирается на втулки (16) и пружину (17) меняет угол и перемещается вниз, поворачиваясь вокруг горизонтальной средней линии. Под действием обратной пружины (17) и обратного клапана (15) нажимная гильза (31) отходит от поршневого пальца и опускается вниз. В этот момент золотник (27) перемещается в крайнее нижнее положение и изменяет режим подачи воздуха в зону поршня на обратный (теперь воздух поступает под поршень, а выходит из верхней части цилиндра). Вследствие изменения направления подачи-выпуска воздуха из цилиндра поршень также меняет направление движения, теперь он перемещается вверх. Как только поршень (8) перемещается вверх, нажимная гильза (31) быстро «отскакивает» вверх и золотник (27) снова возвращается в верхнее предельное положение. Цикл возвратно-поступательного движения поршня насоса завершен. При наличии в камере сжатого воздуха возвратно-поступательное движение поршня насоса продолжается.

Принцип работы плунжерно-поршневого насоса

Плунжерно-поршневой насос приводится в действие пневматическим насосом через соединительный шток (41) и совершает возвратно-поступательное движение синхронно с поршнем пневматического насоса. Смазка всасывается и нагнетается под давлением.

Соединительный шток связан с плунжерно-поршневым штоком, который, в свою очередь, соединяет шток обратного клапана (46) и нагрузочный шток (47). Таким образом, при возвратно-поступательном движении поршня пневматического насоса нагрузочная пластина, установленная на нагрузочном штоке, также перемещается вверх и вниз, совершая синхронное возвратно-поступательное движение.

Плунжерно-поршневой насос содержит 4 обратных клапана для нагнетания смазки под давлением. Как только нагрузочная пластина (58) перемещается вверх, уровень смазки во впускном патрубке смазки (57) увеличивается под действием нагрузочной пластины через кольцо перелива (56) и впускной клапан смазки (55). При этом обратный клапан (52) перемещается вверх. Смазка попадает в корпус насоса (51). Затем нагрузочная пластина перемещается вниз, поэтому под действием собственного веса и силы тяжести смазки обратный клапан (52) перемещается вниз, а клапан (55) и впускной патрубок смазки (57) перекрываются. Так работает первый обратный клапан насоса. Нагрузочная возвратно-поступательное продолжает движение, постепенно заполняет корпус насоса (51) и нажимает на второй обратный клапан, открывает его и попадает в плунжерную камеру (44). Клапан состоит из стального шарика (43), пружины всаса смазки (42), седла пружины (45). По мере нарастания уровня масла в плунжерной камере (44), открывается третий обратный клапан и смазка подается в соединительную трубку (48), а затем в камеру со смазкой и на вход четвертого обратного клапана. После того как смазка полностью заполняет плунжерно-поршневой насос, ее давление достигает 30-40МПа. Открывается четвертый обратный клапан и смазка через нагнетающий соединитель (20) подается в шланг высокого давления и, наконец, в маслораздаточный пистолет. Таким образом, производится всасывание смазки,

ее нагнетание и работа плунжерно-поршневого насоса. Когда нагрузочная пластина (58) воздействует на смазку, смазка поступает через седло впускного клапана (55), создается отрицательное давление между впускным патрубком смазки (57) и нагрузочной пластиной в момент ее перемещения вниз. Под действием этого разрежения смазка закачивается во впускной патрубок. Одновременно с этим, для нормальной работы насоса используется прижимной диск смазки в баке нагнетателя.

2. Маслораздаточный пистолет

Маслораздаточный пистолет применяется для нагнетания смазки. Смазка под высоким давлением поступает из насоса через шланг высокого давления в пистолет для нагнетания смазки. Удерживая пистолет в руке и нажимая на рычаг, можно шприцевать шарнирное соединение. В рукоятке пистолета размещена контактная пара, благодаря шарнирному механизму он легко поворачивается для удобства подачи смазки.

3. Шланг высокого давления

Шланг высокого давления соединяет насос для нагнетания смазки с пистолетом, выполнен из маслостойкой резины, средний слой армирован стальным волокном, шланг способен выдерживать давление до 60МПа.

4. Быстросъемный соединитель

Быстросъемный соединитель расположен между источником воздуха и пневматическим насосом. Соединитель оснащен клапаном. После установки шланга в соединитель, клапан открывается автоматически, перед отсоединением клапан закрывается. Соединитель удобен и обеспечивает быстрое соединение-отключение.

5. Бак для хранения смазки

Бак выполняет роль резервуара для хранения смазки, на нем размещаются: насос для нагнетания смазки, маслораздаточный пистолет, шланг высокого давления и подвижные детали, которые облегчают процедуру нагнетания смазки. Емкость бака рассчитана на 12 кг смазки, она герметична и предотвращает загрязнение смазки посторонними частицами. В бак устанавливается насос, прижимной диск (пластина), которая прижимается к верхнему слою смазки, поэтому она втекает в во впускной патрубок (57) насоса. Это обеспечивает нагнетание смазки насосом во время работы.

Поиск и устранение неисправностей

Описание неисправности	Причины неисправностей	Метод решения	
Остановка насоса (кроме штатной остановки насоса при равновесном давлении)	Неисправность обратного клапана	Проверьте обратный клапан на наличие засорений. При необходимости, замените	
	Ослаблено крепление нагрузочной пластины	Закрепите нагрузочную пластину, закрутите резьбовую крышку	
	Загрязнение во впускном отверстии	Очистите	
2. Смазка не подается в насос	Чрезмерно высокая вязкость смазки	Используйте смазку по сезону: литиевую #0 и #1 зимой, литиевую #1 и #2 весной и осенью, литиевую #2 и #3 летом	
	Загрязнение клапана	Очистите	
	Недостаточное количество смазки в баке аппарата	Долейте смазку в бак	
3. Утечка воздуха	Износ в контактной зоне золотника и седла клапана подачи воздуха	Снимите и прошлифуйте их, чтобы добиться требуемой герметичности	
	Ослаблено крепление блокировочной пластины	Разберите и отрегулируйте, затяните винты	
	Засорены детали нагнетательного шланга, подача смазки затруднена	Проверьте зону засорения. Очистите.	
Низкое давление нагнетания смазки	Частично поврежден канал подачи смазки в пистолете	Разберите пистолет, проведите очистку засоренных деталей	
Harrierania Gwaskii	Засорены оба обратных	Разберите плунжерный насос,	
	клапана плунжерного насоса	проведите очистку	
	Засорен проход между обратным клапаном и	Разберите клапан подачи смазки, очистите его	
	впускным клапаном смазки		
5. Смазка дает утечку при выпуске воздуха	U-образное уплотнительное кольцо негерметично	Замените U-образное уплотнительное кольцо	
Вращающиеся детали пистолета дают утечку смазки	Резиновое уплотнительное кольцо негерметично	Установите новые уплотнения	